Selasa, 19 Juni 2012

gravimetri


Analisis gravimetri ini merupakan salah satu teknik analisis kuantitatif yang menggunakan gravi / berat. Pada dasarnya, gravimetri dapat dilakukan melalui tiga cara yaitu penguapan, elektrolisis dan pengendapan. Salah satu contoh penguapan metode gravimetri adalah dalam penentuan air / hidrat dalam Barium klorida dengan cara menghilangkan semua hidrat kristal di atas suhu 100oC . Teknik ini diawali dengan penimbangan sampel lalu dilakukan pelarutan dan pengendapan pada larutan tersebut dengan pereaksi pengendap kemudian dilakukan penyaringan endapan yang terbentuk. Kemudian endapan yang telah disaring diabukan dengan pembakar suhu tinggi seperti meker dean tanur dan diakhiri dengan penimbangan sampai diapatkan bobot tetap 
Langkah pengukuran pada gravimetri adalah pengukuran berat. Analit secara fisik dipisahkan dari semua komponen lainnya maupun dengan solvennya. Persyaratan yang harus dipenuhi agar garvimetri dapat berhasil ialah terdiri dari proses pemisahan yang harus cukup sempurna sehingga kualitas analit yang tidak mengendap secara analit tidak ditentukan dan zat yang ditimbang harus mempunyai susunan tertentu dan harus murni atau mendekati murni. Jika tidak demikian hasil yang akan diperoleh akan salah. Pada umumnya dua hal yang perlu diingat pada penentuan faktor garvimetri; yaitu berat molekul analit yang merupakan pembilang dan berat zat yang ditimbang yang merupakan penyebut.
Hal yang perlu diperhatikan dalam analisis penentuan kadar zat berdasarkan pengukuran berat analit atau senyawa yang mengandung analit dapat dilakukan dengan :
Metode pengendapan
Isolasi endapan sukar larut dari suatu komposisi yang tak diketahui
Metode penguapan
Larutan yang mengandung analit diuapkan, ditimbang dan kehilangan berat dihitung.

Setelah didapat endapan, endapan dipisahkan dan dikeringkan melalui proses pemijaran. Pemijaran adalah proses pemanasan endapan yang dilakukan bersama dengan kertas saring. Pemijaran dilakukan pada suhu yang cukup panas sehingga diperoleh endapan kering yang dapat di timbang. Suhu dan lamanya pemijaran tergantung sifat-sifat endapan 

spektrofotometri



   Spektrofotometri visible disebut juga spektrofotometri sinar tampak. Yang dimaksud sinar tampak adalah sinar yang dapat dilihat oleh mata manusia. Cahaya yang dapat dilihat oleh mata manusia adalah cahaya dengan panjang gelombang 400-800 nm dan memiliki energi sebesar 299–149 kJ/mol. r
Panjang gelombang (nm)
Warna warna yang diserap
Warna komplementer (warna yang terlihat)
400 – 435
Ungu
Hijau kekuningan
435 – 480
Biru
Kuning
480 – 490
Biru kehijauan
Jingga
490 – 500
Hijau kebiruan
Merah
500 – 560
Hijau
Ungu kemerahan
560 – 580
Hijau kekuningan
Ungu
580 – 595
Kuning
Biru
595 – 610
Jingga
Biru kehijauan
610 – 800
Merah
Hijau kebiruan
      
Panjang gelombang yang digunakan untuk melakukan analisis adalah panjang gelombang dimana suatu zat memberikan penyerapan paling tinggi yang disebut λmaks. Hal ini disebabkan jika pengukuran dilakukan pada panjang gelombang yang sama, maka data yang diperoleh makin akurat atau kesalahan yang muncul makin kecil.
        Berdasarkan hukum Beer absorbansi akan berbanding lurus dengan konsentrasi, karena b atau l harganya 1 cm dapat diabaikan dan ε merupakan suatu tetapan. Artinya konsentrasi makin tinggi maka absorbansi yang dihasilkan makin tinggi, begitupun sebaliknya konsentrasi makin rendah absorbansi yang dihasilkan makin rendah.
     Hubungan antara absorbansi terhadap konsentrasi akan linear (A≈C) apabila nilai absorbansi larutan antara 0,2-0,8 (0,2 ≤ A ≥ 0,8) atau sering disebut sebagai daerah berlaku hukum Lambert-Beer. Jika absorbansi yang diperoleh lebih besar maka hubungan absorbansi tidak linear lagi. Kurva kalibarasi hubungan antara absorbansi versus konsentrasi.
Faktor-faktor yang menyebabkan absorbansi vs konsentrasi tidak linear:
  1. Adanya serapan oleh pelarut. Hal ini dapat diatasi dengan penggunaan blangko, yaitu larutan yang berisi selain komponen yang akan dianalisis termasuk zat pembentuk warna.
  2. Serapan oleh kuvet. Kuvet yang ada biasanya dari bahan gelas atau kuarsa, namun kuvet dari kuarsa memiliki kualitas yang lebih baik.
  3. Kesalahan fotometrik normal pada pengukuran dengan absorbansi sangat rendah atau sangat tinggi, hal ini dapat diatur dengan pengaturan konsentrasi, sesuai dengan kisaran sensitivitas dari alat yang digunakan (melalui pengenceran atau pemekatan).

         Zat yang dapat dianalisis menggunakan spektrofotometri sinar tampak adalah zat dalam bentuk larutan dan zat tersebut harus tampak berwarna, sehingga analisis yang didasarkan pada pembentukan larutan berwarna disebut juga metode kolorimetri.
        Jika tidak berwarna maka larutan tersebut harus dijadikan berwarna dengan cara memberi reagen tertentu yang spesifik. Dikatakan spesifik karena hanya bereaksi dengan spesi yang akan dianalisis. Reagen ini disebut reagen pembentuk warna (chromogenik reagent). Berikut adalah sifat-sifat yang harus dimiliki oleh reagen pembentuk warna:
  1. Kestabilan dalam larutan. Pereaksi-pereaksi yang berubah sifatnya dalam waktu beberapa jam, dapat menyebabkan timbulnya semacam cendawan bila disimpan. Oleh sebab itu harus dibuat baru dan kurva kalibarasi yang baru harus dibuat saat setiap kali analisis.
  2. Pembentukan warna yang dianalisis harus cepat.
  3. Reaksi dengan komponen yang dianalisa harus berlangsung secara stoikiometrik.
  4. Pereaksi tidak boleh menyerap cahaya dalam spektrum dimana dilakukan pengukuran.
  5. Pereaksi harus selektif dan spesifik (khas) untuk komponen yang dianalisa, sehingga warna yang terjadi benar-benar merupakan ukuran bagi komponen tersebut saja.
  6. Tidak boleh ada gangguan-gangguan dari komponen-komponen lain dalam larutan yang dapat mengubah zat pereaksi atau komponen komponen yang dianalisa menjadi suatu bentuk atau kompleks yang tidak berwarna, sehingga pembentukan warna yang dikehandaki tidak sempurna.
  7. Pereaksi yang dipakai harus dapat menimbulkan hasil reaksi berwarna yang dikehendaki dengan komponen yang dianalisa, dalam pelarut yang dipakai.

          Setelah ditambahkan reagen atau zat pembentuk warna maka larutan tersebut harus memiliki lima sifat di bawah ini:
  1. Kestabilan warna yang cukup lama guna memungkinkan pengukuran absorbansi dengan teliti. Ketidakstabilan, yang mengakibatkan menyusutnya warna larutan (fading), disebabkan oleh oksidasi oleh udara, penguraian secara fotokimia, pengaruh keasaman, suhu dan jenis pelarut. Namun kadang-kadang dengan mengubah kondisi larutan dapat diperoleh kestabilan yang lebih baik.
  2. Warna larutan yang akan diukur harus mempunyai intensitas yang cukup tinggi (warna harus cukup tua) yang berarti bahwa absortivitas molarnya (ε) besar. Hal ini dapat dikontrol dengan mengubah pelarutnya. Dalam hal ini dengan memilih pereaksi yang memiliki kepekaan yang cukup tinggi.
  3. Warna larutan yang diukur sebaiknya bebas daripada pengaruh variasi-variasi kecil kecil dalam nilai pH, suhu maupun kondisis-kondisi yang lain.
  4. Hasil reaksi yang berwarna ini harus larut dalam pelarut yang dipakai.
  5. Sistem yang berwarna ini harus memenuhi Hukum Lambert-Beer.









           Konsentrasi sampel dalam suatu larutan dapat ditentukan dengan rumus yang diturunkan dari hukum lambert beer (A= a . b . c atau A = ε . b . c). Namun ada cara lain yang dapat digunakan untuk menentukan konsentrasi suatu spesi yang ada dalam suatu larutan yakni dengan cara kurva kalibarasi. Cara ini sebenarnya masih tetap bertumpu pada hukum Lambert-Beer yakni absorbansi berbanding lurus dengan konsentrasi.
            Langkah-langkah yang perlu dilakukan dalam penentuan konsentrasi zat dengan kurva kalibarasi:
  1. Maching kuvet : mencari dua buah kuvet yang memiliki absorbansi atau transmitansi sama atau hampir sama. Dua buah kuvet inilah yang akan digunakan untuk analisis, satu untuk blanko, satu untuk sampel. Dalam melakukan analisis Maching kuvet harus dilakukan agar kesalahannya makin kecil.
  2. Membuat larutan standar pada berbagai konsentrasi. Larutan standar yaitu larutan yang konsentrasinya telah diketahui secara pasti. Konsentrasi larutan standar dibuat dari yang lebih kecil sampai lebih besar dari konsentrasi analit yang diperkirakan.
  3. Ambilah salah satu larutan standar, kemudian ukur pada berbagai panjang gelombang. Hal ini dilakukan untuk mengetahui pada panjang gelombang berapa, absorbansi yang dihasilkan paling besar. Panjang gelombang yang menghasilkan absorbansi paling besar atau paling tinggi disebut panjang gelombang maksimum (lmaks).
  4. Ukurlah absorbansi semua larutan standar yang telah dibuat pada panjang gelombang maksimum.
  5. Catat absorbansi yang dihasilkan dari semua larutan standar, kemudian alurkan pada grafik absorbansi vs konsentrasi sehingga diperoleh suatu kurva yang disebut kurva kalibarasi. Dari hukum Lambart-Beer jika absorbansi yang dihasilkan berkisar antara 0,2-0,8 maka grafik akan berbentuk garis lurus, namun hal ini tidak dapat dipastikan.

potensiometri


Potensiometri merupakan metode analisis kimia berdasar hubungan antara potensial elektroda relatif dengan konsentrasi larutan dalam suatu sel kimia. Metode ini berguna untuk menentukan titik setara suatu titirasi secra instrumental sebagai pengganti indikator visual. Alat yang digunakan untuk melakukan percobaan ini adalah potensiometri atau pH meter dengan elektroda kerja dan referensi yang tercelup dalam larutan yang diukur. Hasil pengukuran berupa harga potnsional elektroda yang dapat dibuat kurva hubungan antara potensial (E) dan volume pereaksinya
Potensiometri merupakan salah satu cara pemeriksaan fisik kimia yang menggunakan peralatan listrik untuk mengukur potensial elektroda, besarnya potensial elektroda ini tergantung pada kepekatan ion–ion tertentu dalam larutan, karena itu dengan memakai persamaan Nernst :
E = Eo + K log (c)
Dimana :
E = selpotensial yang diukur
Eo = konstan selama pemberian suhu
C = konsentrasi yang ditentukan
Potensial suatu elektroda tidak dapat diukur tersendiri, tetapi dapat ditentukan dengan menggunakan elektroda indikator dengan elektroda pembanding yang hanya memiliki harga potensial yang tetap selama pengukuran. Elektroda pembanding yang diambil sebagai baku international adalah elektroda hidrogen baku. Harga potensial elektroda ini ditetapkan nol pada kesadahan baku ( H+ )= 1 M, tekanan gas H2 = 1 atm dan suhu 25o C, sedangkan gaya gerak listrik ( GGL ) pasangan elektroda itu diukur dengan bantuan potensiometer yang sesuai, dan sering digunakan peralatan elektronik.
Potensial dalam titrasi potensiometri dapat diukur sesudah penambahan sejumlah kecil volume titran secara berturut-turut atau secara kontinu dengan perangkat automatik. Presisi dapat dipertinggi dengan sel konsentrasi. Elektroda indikator yang digunakan dalam titrasi potensiometri tentu saja akan bergantung pada macam reaksi yang sedang diselidiki. Jadi untuk suatu titrasi asam basa, elektroda indikator dapat berupa elektroda hidrogen atau sesuatu elektroda lain yang peka akan ion hidrogen, untuk titrasi pengendapan halida dengan perak nitrat, atau perak dengan klorida akan digunakan elektroda perak, dan untuk titrasi redoks (misalnya, besi(II)) dengan dikromat digunakan kawat platinum semata-mata sebagai elektroda redoks.
Potensiometri merupakan aplikasi langsung dari persamaan Nerst dengan cara pengukuran potensial dua elektroda tidak terpolarisasi pada kondisi arus nol. Persamaan Nersnt memberikan hubungan antara potensial relatif suatu elektroda dan konsentrasi spesies ioniknya yang sesuai dalam larutan. Dengan pengukuran potensial revensibel suatu elektroda, maka perhitungan aktivitas atau konsentrasi suatu komponen dapat dilakukan. Jika dua elektroda yang sama diletakkan pada silinder berisi larutan yang sama, (tetapi berbeda konsentrasi) serta dihubungkan dengan suatu jembatan garam, maka potensial diantara dua lektroda sesuai dengan perbandingan kedua konsentrasinya tersebut. Ini diketahui sebagai sel konsentrasi.
Kelebihan potensiometri:
·         Tidak perlu indikator
·         Bisa menentukan titik equivalen
·         Bisa hamper untuk semua jenis titrasi


titrasi redoks


Titrasi redoks merupakan titrasi yang didasarkan pada reaksi oksidasi reduksi antara analit dan titran. Titrasi redoks banyak digunakan untuk penentuan sebagian besar logam-logam. Indikator yang digunakan pada titrasi ini menggunakan berbagai cara kerja. Pada titrasi yang menggunakan KMnO4 tidak menggunakan suatu larutan indikator, tetapi larutan KMnO4 itu sendiri dapat bertindak sebagai indicator.
Beberapa titrasi redoks menggunakan amilum sebagai indicator, khususnya titrasi redoks yang melibatkan iodine. Indikator yang lain yang bersifat reduktor/oksidator lemah juga sering dipakai untuk titrasi redoks jika kedua indikator diatas tidak dapat diaplikasikan, misalnya ferroin, metilen, blue, dan nitroferoin.
Contoh: titrasi redoks yang terkenal adalah iodimetri, Iodometri, permanganometri menggunakan titrant kalium permanganat untuk penentuan Fe2+ dan Oksalat, Kalium dikromat dipakai untuk titran  penentuan Besi(II) dan Cu(I) dalam CuCl. Bromat dipakai sebagai titrant untuk penentuan fenol, dan iodida (sebagai I2 yang dititrasi dengan tiosulfat.), dan Cerium(IV) yang bisa dipakai untuk titrant titrasi redoks penentuan ferosianida dan nitrit.
      Titik akhir dari suatu titrasi redoks dapat dilakukan dengan mebuat kurva titrasi antara potensial larutan dengan volume titran atau dapat juga menggunakan indicator. Dengan memandang tingkat kemudahan dan efisiensi maka titrasi redoks dengan indicator sering kali yang banyak dipilih. Beberapa titrasi redoks menggunakan warna titrant sebagai indicator contohnya penentuan oksalat dengan permanganate, atau penentuan alkohol dengan kalium dikromat.

            Kalium Permanganat
 Kalium permanganat digunakan secara luas sebagai pereaksi oksidasi selama seratus tahun lebih. Zat ini merupakan pereaksi yang mudah diperoleh, tidak mahal dan tidak memerlukan suatu indicator kecuali kalau digunakan larutan-larutan yang sangat encer. Satu tetes KMnO4 0,1 N memberikan suatu warna merah muda yang jelas pada larutan dalam titrasi. Permanganat mengalami reaksi kimia yang bermacam-macam, karena mangan dapat berada dalam keadaan-keadaan oksidasi +2, +3, +4, +5, +6, +7. Untuk reaksi yang berlangsung dalam larutan yang asam akan terjadi reaksi :
            MnO4 -+ 8H­­­­+ + 5e <=> Mn 2++ 4H­2O
Sedangkan untuk reaksi dalam larutan berasam rendah :
            MnO4 -+ 8H­­­­+ + 3e <=>        MnO2 + 2H­2O
Reaksi yang paling banyak digunakan adalah reaksi pada larutan yang sangat asam, dimana permanganat bereaksi dengan sangat cepat.

Natrium Oksalat
Senyawa ini merupakan standar primer yang baik bagi permanganat dalam larutan berasam. Dapat diperoleh dalam derajat kemurnian yang tinggi, stabil pada pemanasan dan tidak higroskopis. Reaksi dengan permanganat agak komplek dan sekalipun banyak penelitian yang telah dilakukan, namun mekanisme yang tepat tidak jelas. Reaksinya lambat pada suhu kamar. Oleh kareana itu biasanya larutan dipanaskan pada suhu 600C. Pada kenaikan suhu, pada awalnya reaksi berjalan lambat, tetapi kecepatan meningkat setelah ion mangan (II) terbentuk. Mangan (II) bertindak sebagai suatu katalis dan reaksinya dinamakan otokatalitik karena katalis dihasilkan oleh reaksinya sendiri. Ionnya mungkin mempengaruhi efek katalitiknya dengan cepat bereaksi dengan permanganat untuk membentuk mangan dari keadaan oksidasi antara +3 dan +4 yang selanjutnya dengan cepat mengoksidasi ion oksalat, kembali keadaan divalent. Adapun reaksinya adalah :
                        5C2O42- + 2MnO4 + 16H+  2Mn 2+ + 10 CO2 + 8H2O
    
              Fowler dan bright melakukan suatu penelitian yang sangat mendalam terhadap kesalahan-kesalahan yang mungkin didalam titrasi. Mereka menemukan beberapa bukti dari pembentukan peroksida
            O+  H2C2O4   →   H2O2  +  2 CO2
Dan apabila perioksida terurai sebelum bereaksi dengan permanganat, terlalu sedikit larutan permanganat yang diperlukan sehingga dari perhitungan normalitasnya tinggi. Mereka menyarankan agar hampir semua permanganat ditambahkan dengan cepat dalam larutan dipanaskan sampai 60 0C dan titrasi diselesaikan pada suhu ini.


Jumat, 15 Juni 2012

Permanganometri

Permanganometri merupakan metode titrasi dengan menggunakan kalium permanganat, yang merupakan oksidator kuat sebagai titran. Titrasi ini didasarkan atas titrasi reduksi dan oksidasi atau redoks. Kalium permanganat telah digunakan sebagai pengoksida secara meluas lebih dari 100 tahun. Reagensia ini mudah diperoleh, murah dan tidak memerlukan indikator kecuali bila digunakan larutan yang sangat encer. Permanganat bereaksi secara beraneka, karena mangan dapat memiliki keadaan oksidasi +2, +3, +4, +6, dan +7
Dalam suasana asam atau [H+] ≥ 0,1 N, ion permanganat mengalami reduksi menjadi ion mangan (II) sesuai reaksi :
MnO4- + 8H+ + 5e- Mn2+ + 4H2O Eo = 1,51 Volt
Dalam suasana netral, ion permanganat mengalami reduksi menjadi mangan dioksida seperti reaksi berikut :
MnO4- + 4H+ + 3e- MnO2 + 2H2O Eo = 1,70 Volt
Dan dalam suasana basa atau [OH-] ≥ 0,1 N, ion permanganat akan mengalami reduksi sebagai berikut:
MnO4- + e- MnO42- Eo = 0,56 Volt
(Svehla, 1995).
Asam sulfat adalah asam yang paling sesuai, karena tidak bereaksi terhadap permanganat dalam larutan encer. Dengan asam klorida, ada kemungkinan terjadi reaksi :
2MnO4- + 10Cl- + 16H+ 2Mn2+ + 5Cl2 + 8H2O
dan sedikit permanganat dapat terpakai dalam pembentukan klor. Reaksi ini terutama berkemungkinan akan terjadi dengan garam-garam besi, kecuali jika tindakan-tindakan pencegahan yang khusus diambil. Dengan asam bebas yang sedikit berlebih, larutan yang sangat encer, temperatur yang rendah, dan titrasi yang lambat sambil mengocok terus-menerus, bahaya dari penyebab ini telah dikurangi sampai minimal. Pereaksi kalium permanganat bukan merupakan larutan baku primer dan karenanya perlu dibakukan terlebih dahulu. Pada percobaan ini untuk membakukan kalium permanganat ini dapat digunakan natrium oksalat yang merupakan standar primer yang baik untuk permanganat dalam larutan asam (Basset, 1994).
Untuk pengasaman sebaiknya dipakai asam sulfat, karena asam ini tidak menghasilkan reaksi samping. Sebaliknya jika dipakai asam klorida dapat terjadi kemungkinan teroksidasinya ion klorida menjadi gas klor dan reaksi ini mengakibatkan dipakainya larutan permanganat dalam jumlah berlebih. Meskipun untuk beberapa reaksi dengan arsen (II) oksida, antimoni (II) dan hidrogen peroksida, karena pemakaian asam sulfat justru akan menghasilkan beberapa tambahan kesulitan. Kalium pemanganat adalah oksidator kuat, oleh karena itu jika berada dalam HCl akan mengoksidasi ion Cl- yang menyebabkan terbentuknya gas klor dan kestabilan ion ini juga terbatas. Biasanya digunakan pada medium asam 0,1 N. Namun, beberapa zat memerlukan pemanasan atau katalis untuk mempercepat reaksi. Seandainya banyak reaksi itu tidak lambat, akan dijumpai lebih banyak kesulitan dalam menggunakan reagensia ini (Svehla, 1995).
MnO4- + 8H+ + 5e Mn2+ + 4H2O E0 = 1,51V

Iodometri

Metode titrasi iodometri tak langsung (iodometri) adalah berkenaan dengan titrasi dari ion yang dibebaskan dalam reaksi kimia. Lrutan standar yang digunakan dalam kebanyakan proses iodometri adalah natrium thiosulfat garam ini biasanya berbentuk penhidrat Na2S2O3. 5H2O. larutan tidak boleh di standarisasi dengan penimbangan secara langsung, tetapi harus di standarisasi dengan standar primer. Larutan natrium thiosulfat tidak stabil untuk waktu yang lama.
Tembaga murni dapat digunakan sebagai standar primer untuk natrium thiosulfat dan di anjuirkan apabila thiosulfat harus digunakan untuk penentuan tembaga. Iodin juga memberikan warna ungu atau violet yang intensuntuk zat-zat pelarut seperti karbon tetra klorida dan kloroform. Namun demikian larutan dari kanji lebih umum dipergunakan, karena warna biru gelap dari kompleks iodine kanji bertindak sebagai suatu tes yang amat sensitive untuk iodine. Dalam beberapa proses tak langsung banyak agen pengoksid yang kuat dapat dianalisis dengan menambahkan kalium iodida berlebih dan menitrasi iodin
Metode titrasi iodometri langsung mengacu kepadatitrasi dengan suatu larutan iod standar. Metode titrasi iodometri tak langsung adalah berkenaan dengan titrasi dari iod yang dibebaskan dalam reaksi kimia.potensial reduksi normal dari sistem reversible:
 I2(solid) 2e   2I-
persamaan diatas mengacu kepada suatu larutan air yang jenuh dengan adanya iod padat, reaksi sel setengah ini terjadi, misalnya, menjelang akhir titrasi iodida dengan suatu zat pengoksid seperti kalium permanganat, ketika konsentrasi ion iodida menjadi relatif rendah. dekat permulaan atau dalam kebanyakan titrasi iodometri, bila ion iodida terdapat dengan berlebih, terbentuklah ion tri iodida:
 I3- + I-     I3-
karena iod mudah larut dalam larutan iodida, reaksi sel setengah itu lebih baik ditulis sebagai: 
I3- + 2e        3I-
potensial reduksi standarnya adalah 0,5355 volt. Maka, iod atau ion tri iodida merupakan zat pengoksid yang jauh lebih lemah ketimbang kal;ium permanganat, kalium dikromat, dan serium.

Kompleksometri




Titrasi kompleksometri adalah suatu jenis titrasi dimana reaksi antara bahan yang di analisis dan titrant akan membentuk suatu kompleks. Kompleks senyawa ini disebut kelat dan terjadi akibat titrant dan titrat yang saling mengkompleks. Kelat yang terbentuk melalui titrasi terdiri dari dua komponen yang membentuk ligan dan tergantung pada titran serta titrat yang hendak diamati. Kelat yang terbentuk melalui titrasi terdiri dari dua komponenyang membentuk ligan dan tergantung pada titrant serta titrat yang hendak diamati. Kompleksometri merupakan jenis titrasi dimana titran dan titrat saling mengkompleks, membentuk hasil berupa kompleks. Contoh reaksi titrasi kompleksometri :
Ag+ + 2 Cl- Ag(CN)2
Hg2+ + 2Cl-HgCl2
Faktor-faktor yang membuat EDTA ampuh sebagai pereaksi titrimetri antaralain:
·         Selalu membentuk kompleks ketika direaksikan dengan ion logam.
·         Kestabilnnya dalam membentuk kelat sangat konstan sehingga reaksi berjalan dengan sempurna (kecuali dengan logam alkali).
·         Dapat bereaksi cepat dengan banyak jenis ion logam.
·         Telah dikembangkan indikatornya secara khusus.
·         Mudah diperoleh bahan baku primernya.
·         Baik digunakan sebagai bahan yang dianalis mauun bahan sebagai standarisasi.
·         Fakto-faktor inilah yang membuat syarat-syarat untuk titrasi telah terpenuhi dengan baik jika menggunakan EDTA.
Salah satu tipe reaksi kimia yang berlaku sebagai dasar penentuan titrimetrik melibatkan pembentukan (formasi) kompleks atau ion kompleks yang larut namun sedikit terdisosiasi. Kompleks yang dimaksud di sini adalah kompleks yang dibentuk melalui reaksi ion logam, sebuah kation, dengan sebuah anion atau molekul netral.


http://bits.wikimedia.org/skins-1.19/common/images/magnify-clip.png